Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            A promising approach to preserving model performance in linearized transformers is to employ position-based re-weighting functions. However, state-of-the-art re-weighting functions rely heavily on target sequence lengths, making it difficult or impossible to apply them to autoregressive and simultaneous tasks, where the target and sometimes even the input sequence length are unknown. To address this issue, we propose Learned Proportions (LeaP) and LeaPformers. Our contribution is built on two major components. First, we generalize the dependence on explicit positional representations and sequence lengths into dependence on sequence proportions for re-weighting. Second, we replace static positional representations with dynamic proportions derived via a compact module, enabling more flexible attention concentration patterns. We evaluate LeaPformer against eight representative efficient transformers on the Long-Range Arena benchmark, where we show that LeaPformer achieves the best quality-throughput trade-off, as well as apply LeaPformer to Wikitext-103b autoregressive language modeling and simultaneous speech-to-text translation for two language pairs, achieving competitive results in both tasks.more » « less
- 
            Large language models (LLMs) with billions of parameters and pretrained on massive amounts of data are now capable of near or better than state-of-the-art performance in a variety of downstream natural language processing tasks. Neural machine translation (NMT) is one such task that LLMs have been applied to with great success. However, little research has focused on applying LLMs to the more difficult subset of NMT called simultaneous translation (SimulMT), where translation begins before the entire source context is available to the model. In this paper, we address key challenges facing LLMs fine-tuned for SimulMT, validate classical SimulMT concepts and practices in the context of LLMs, explore adapting LLMs that are fine-tuned for NMT to the task of SimulMT, and introduce Simul-LLM, the first open-source fine-tuning and evaluation pipeline development framework for LLMs focused on SimulMT.more » « less
- 
            Simultaneous speech translation is an essential communication task difficult for humans whereby a translation is generated concurrently with oncoming speech inputs. For such a streaming task, transformers using block processing to break an input sequence into segments have achieved state-of-the-art performance at a reduced cost. Current methods to allow information to propagate across segments, including left context and memory banks, have faltered as they are both insufficient representations and unnecessarily expensive to compute. In this paper, we propose an Implicit Memory Transformer that implicitly retains memory through a new left context method, removing the need to explicitly represent memory with memory banks. We generate the left context from the attention output of the previous segment and include it in the keys and values of the current segment’s attention calculation. Experiments on the MuST-C dataset show that the Implicit Memory Transformer provides a substantial speedup on the encoder forward pass with nearly identical translation quality when compared with the state-of-the-art approach that employs both left context and memory banks.more » « less
- 
            Shiftable Context: Addressing Training-Inference Context Mismatch in Simultaneous Speech TranslationTransformer models using segment-based processing have been an effective architecture for simultaneous speech translation. However, such models create a context mismatch between training and inference environments, hindering potential translation accuracy. We solve this issue by proposing Shiftable Context, a simple yet effective scheme to ensure that consistent segment and context sizes are maintained throughout training and inference, even with the presence of partially filled segments due to the streaming nature of simultaneous translation. Shiftable Context is also broadly applicable to segment-based transformers for streaming tasks. Our experiments on the English-German, English-French, and English-Spanish language pairs from the MUST-C dataset demonstrate that when applied to the Augmented Memory Transformer, a state-of-the-art model for simultaneous speech translation, the proposed scheme achieves an average increase of 2.09, 1.83, and 1.95 BLEU scores across each wait-k value for the three language pairs, respectively, with a minimal impact on computation-aware Average Lagging.more » « less
- 
            Transformer models have emerged as the state-of-the-art in many natural language processing and computer vision applications due to their capability of attending to longer sequences of tokens and supporting parallel processing more efficiently. Nevertheless, the training and inference of transformer models are computationally expensive and memory intensive. Meanwhile, utilizing the sparsity in deep learning models has proven to be an effective approach to alleviate the computation challenge as well as help to fit large models in edge devices. As high-performance CPUs and GPUs are generally not flexible enough to explore low-level sparsity, a number of specialized hardware accelerators have been proposed for transformer models. This paper provides a comprehensive review of hardware transformer accelerators that have been proposed to explore sparsity for computation and memory optimizations. We classify existing works based on the strategies of utilizing sparsity and identify their pros and cons in those strategies. Based on our analysis, we point out promising directions and recommendations for future works on improving the effective sparse execution of transformer hardware accelerators.more » « less
- 
            Interconnection network topology is critical for the overall performance of HPC systems. While many regular and irregular topologies have been proposed in the past, recent work has shown the promise of shortcut-augmented topologies that offer multi-fold reduction in network diameter and hop count over conventional topologies. However, the large number of possible shortcuts creates an enormous design space for this new type of topology, and existing approaches are extremely slow and do not find shortcuts that are globally optimal. In this paper, we propose an efficient heuristic approach, called EdgeCut, which generates high-quality shortcut-augmented topologies. EdgeCut can identify more globally useful shortcuts by making its considerations from the perspective of edges instead of vertices. An additional implementation is proposed that approximates the costly all-pair shortest paths calculation, thereby further speeding up the scheme. Quantitative comparisons over prior work show that the proposed approach achieves a 1982× reduction in search time while generating better or equivalent topologies in 94.9% of the evaluated cases.more » « less
- 
            The recent introduction of Unified Virtual Memory (UVM) in GPUs offers a new programming model that allows GPUs and CPUs to share the same virtual memory space, which shifts the complex memory management from programmers to GPU driver/ hardware and enables kernel execution even when memory is oversubscribed. Meanwhile, UVM may also incur considerable performance overhead due to tracking and data migration along with special handling of page faults and page table walk. As UVM is attracting significant attention from the research community to develop innovative solutions to these problems, in this paper, we propose a comprehensive UVM benchmark suite named UVMBench to facilitate future research on this important topic. The proposed UVMBench consists of 32 representative benchmarks from a wide range of application domains. The suite also features unified programming implementation and diverse memory access patterns across benchmarks, thus allowing thorough evaluation and comparison with current state-of-the-art. A set of experiments have been conducted on real GPUs to verify and analyze the benchmark suite behaviors under various scenarios.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available